Learners take Components: 01, 02, and 03; or 01, 02 and 04 to be awarded the OCR GCSE (9-1) in
Computer Science.

Content Overview Assessment Overview

Computer systems

o Systems Architecture Computer systems
° Memory
o Storage (01) 40%
° Wired and wireless networks 80 marks f I
o Network topologi tocol
ar:advlvaoyrersopo ogies, protocols 1 hour and 30 minutes (0) tOta
. System security Written paper G CS E
o System software

_ (no calculators allowed)
. Ethical, legal, cultural and

environmental concerns

Computational thinking, algorithms Computational thinking,
and programming algorithms and programming
. Algorithms * (02) 40%
o Programming techniques
. Producing robust programs 80 marks Of tOtaI
o Computational logic 1 hour and 30 minutes GCSE
o Translators and facilities of .
Written paper

languages

o Data representation (no calculators allowed)

Programming project **
Programming project

o Programming techniques 0

. Analysis (03/04) 20 A)

* Design 40 marks of total

o Development _

o Testing and evaluation and Totalling 20 hours G CS E
conclusions Non-Exam Assessment (NEA)

* Algorithm questions are not exclusive to Component 02 and can be assessed in all components.

**Indicates inclusion of synoptic assessment.

Learners who are retaking the qualification may carry forward their result for the non-examined assessment
component.

© OCR 2016
q GCSE (9-1) in Computer Science

2b. Content of Computer systems (J276/01)

This component will introduce learners to the through the study of the ethical, legal, cultural and
Central Processing Unit (CPU), computer memory environmental concerns associated with Computer
and storage, wired and wireless networks, network Science. It is expected that learners will draw on this
topologies, system security and system software. underpinning content when completing the

It is expected that learners will become familiar with Programming Project component (03 or 04).

the impact of Computer Science in a global context

1.1 Systems architecture

Learners should have studied the following:

the purpose of the CPU

Von Neumann architecture:

o MAR (Memory Address Register)

o MDR (Memory Data Register)

o Program Counter

o Accumulator

common CPU components and their function:

o ALU (Arithmetic Logic Unit)

o CU (Control Unit)

o Cache

the function of the CPU as fetch and execute instructions stored in memory
how common characteristics of CPUs affect their performance:
o clock speed

o cache size

o number of cores

embedded systems:

o purpose of embedded systems

o examples of embedded sytems.

1.2 Memory

Learners should have studied the following:

the difference between RAM and ROM
the purpose of ROM in a computer system
the purpose of RAM in a computer system
the need for virtual memory

flash memory.

© OCR 2016
GCSE (9-1) in Computer Science

1.3 Storage

Learners should have studied the following:

o the need for secondary storage
o data capacity and calculation of data capacity requirements
. common types of storage:

o optical

o magnetic
o solid state

o suitable storage devices and storage media for a given application, and the advantages and
disadvantages of these, using characteristics:

capacity

speed

portability

durability

reliability

cost.

o O O O O O

1.4 Wired and wireless networks

Learners should have studied the following:

o types of networks:
o LAN (Local Area Network)
o WAN (Wide Area Network)

o factors that affect the performance of networks
o the different roles of computers in a client-server and a peer-to-peer network
o the hardware needed to connect stand-alone computers into a Local Area Network:

o wireless access points

o routers/switches

o NIC (Network Interface Controller/Card)
o transmission media

o the internet as a worldwide collection of computer networks:
o DNS (Domain Name Server)
o hosting
o thecloud
o the concept of virtual networks.
© OCR 2016
6 GCSE (9-1) in Computer Science

1.5 Network topologies, protocols and layers

Learners should have studied the following:

star and mesh network topologies

Wifi:

o frequency and channels

o encryption

ethernet

the uses of IP addressing, MAC addressing, and protocols including:
TCP/IP (Transmission Control Protocol/Internet Protocol)
HTTP (Hyper Text Transfer Protocol)

HTTPS (Hyper Text Transfer Protocol Secure)

FTP (File Transfer Protocol)

POP (Post Office Protocol)

IMAP (Internet Message Access Protocol)

SMTP (Simple Mail Transfer Protocol)

the concept of layers

packet switching.

o O O O O O O

1.6 System security

Learners should have studied the following:

forms of attack

threats posed to networks:

malware

phishing

people as the ‘weak point’ in secure systems (social engineering)
brute force attacks

denial of service attacks

data interception and theft

the concept of SQL injection

poor network policy

identifying and preventing vulnerabilities:
penetration testing

network forensics

network policies

anti-malware software

firewalls

user access levels

passwords

encryption.

@]
@]
O
@]
@]
O
@]
@]

o O O O O O O O

© OCR 2016
GCSE (9-1) in Computer Science

1.7 Systems software

Learners should have studied the following:

o the purpose and functionality of systems software
. operating systems:

o userinterface

o memory management/multitasking

o peripheral management and drivers

© user management

o file management
o utility system software:

o encryption software

o defragmentation
o data compression
o the role and methods of backup:
s full
m incremental.

1.8 Ethical, legal, cultural and environmental concerns

Learners should have studied the following:

o how to investigate and discuss Computer Science technologies while considering:
o ethical issues
o legalissues
o cultural issues
o environmental issues.
o privacy issues.
o how key stakeholders are affected by technologies
o environmental impact of Computer Science
o cultural implications of Computer Science
. open source vs proprietary software
o legislation relevant to Computer Science:

o The Data Protection Act 1998
Computer Misuse Act 1990

Copyright Designs and Patents Act 1988
Creative Commons Licensing

Freedom of Information Act 2000.

o O O O

© OCR 2016
8 GCSE (9-1) in Computer Science

2c.

Content of Computational thinking, algorithms and
programming (J276/02)

This component incorporates and builds on the

knowledge and understanding gained in Component
01, encouraging learners to apply this knowledge and
understanding using computational thinking. Learners
will be introduced to algorithms and programming,

learning about programming techniques, how to
produce robust programs, computational logic,

2.1 Algorithms

translators and facilities of computing languages and
data representation. Learners will become familiar
with computing related mathematics.

It is expected that learners will draw on this
underpinning content when completing the
Programming Project component (03 or 04).

Learners should have studied the following:

computational thinking:

o abstraction

o decomposition

o algorithmic thinking
standard searching algorithms:
o binary search

o linear search

standard sorting algorithms:

o bubble sort

o merge sort

o insertion sort

how to produce algorithms using:
o pseudocode

o using flow diagrams

interpret, correct or complete algorithms.

© OCR 2016
GCSE (9-1) in Computer Science

2.2 Programming techniques

Learners should have studied the following:
o the use of variables, constants, operators, inputs, outputs and assighnments
o the use of the three basic programming constructs used to control the flow of a program:
o sequence
o selection
o iteration (count and condition controlled loops)
o the use of basic string manipulation
o the use of basic file handling operations:
o open
o read
o write
o close
o the use of records to store data
. the use of SQL to search for data
o the use of arrays (or equivalent) when solving problems, including both one and two dimensional
arrays
o how to use sub programs (functions and procedures) to produce structured code
o the use of data types:
o integer
o real
o Boolean
o character and string
o casting
o the common arithmetic operators
o the common Boolean operators.

2.3 Producing robust programs

Learners should have studied the following:

o defensive design considerations:
o input sanitisation/validation
o planning for contingencies
o anticipating misuse
o authentication
o maintainability:
o comments
o indentation
o the purpose of testing
o types of testing:
o iterative
o final/terminal
o how to identify syntax and logic errors
o selecting and using suitable test data.

© OCR 2016
10 GCSE (9-1) in Computer Science

2.4 Computational logic

Learners should have studied the following:
o why data is represented in computer systems in binary form
. simple logic diagrams using the operations AND, OR and NOT
J truth tables
o combining Boolean operators using AND, OR and NOT to two levels
o applying logical operators in appropriate truth tables to solve problems
o applying computing-related mathematics:
o+
R
o
o *
o Exponentiation ()
o MOD
o DIV

2.5 Translators and facilities of languages

Learners should have studied the following:

o characteristics and purpose of different levels of programming language, including low level languages
o the purpose of translators
o the characteristics of an assembler, a compiler and an interpreter
o common tools and facilities available in an integrated development environment (IDE):
o editors

o error diagnostics
o run-time environment
o translators.

© OCR 2016
GCSE (9-1) in Computer Science 11

2.6 Data representation

Learners should have studied the following:

Units

Numbers

Characters

Images

Sound

Compression

bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte, petabyte
how data needs to be converted into a binary format to be processed by a computer.

how to convert positive denary whole numbers (0—255) into 8 bit binary numbers and vice versa
how to add two 8 bit binary integers and explain overflow errors which may occur

binary shifts

how to convert positive denary whole numbers (0—-255) into 2 digit hexadecimal numbers and vice
versa

how to convert from binary to hexadecimal equivalents and vice versa

check digits.

the use of binary codes to represent characters

the term ‘character-set’

the relationship between the number of bits per character in a character set and the number of
characters which can be represented (for example ASCII, extended ASCIl and Unicode).

how an image is represented as a series of pixels represented in binary
metadata included in the file
the effect of colour depth and resolution on the size of an image file.

how sound can be sampled and stored in digital form

how sampling intervals and other factors affect the size of a sound file and the quality of its playback:
o sample size

o bitrate

o sampling frequency.

need for compression
types of compression:
o lossy

o lossless.

12

© OCR 2016
GCSE (9-1) in Computer Science

OCR will issue three assessment tasks at the start of
the terminal academic year of assessment. Only tasks
designated for that examination series can be
submitted unless carrying forward marks from a
previous year. The tasks will provide opportunities for
the learners to demonstrate their practical ability in
the skills outlined in the specification.

Learners will need to create suitable algorithms which
will provide a solution to the problems identified in
the task. They will then code their solutions in a
suitable programming language. The solutions must
be tested at each stage to ensure they solve the
stated problem and learners must use a suitable test
plan with appropriate test data.

The code must be suitably annotated to describe the
process. Test results should be annotated to show
how these relate to the code, the test plan and the
original problem.

Learners will need to provide an evaluation of their
solution based on the test evidence.

Learners should be encouraged to be innovative and
creative in how they approach solving the tasks.

Learners are not allowed access to the internet within
the non-exam assessment controlled environment,
unless the centre is using an online IDE (Integrated
Development Environment). In which case, only
access to the IDE website is allowed.

All work submitted by a learner must have been

done under observation by their teacher and the final
report must be only their own work. External sources
can be used but must be referenced and no marks
can be awarded for materials submitted which are
not the learner’s own. Common coded solutions
identified as being used by learners will not be given
credit during moderation.

© OCR 2016
GCSE (9-1) in Computer Science

Group work can be used to deliver the content
and skills but any work submitted as non-exam
assessment must be the learner’s own.

A form (to be confirmed) will be available at

and will be required upon submission
to confirm the validity of the learner’s work by the
learner, the teacher, and a member of the senior
leadership team at the centre.

The non-exam assessment should take a total of
20 hours to complete unless there are specific
access requirements that should be considered.

The non-exam assessment should be done using a
suitable high level language such as:

o Python

o C family of languages (for example C# C++ etc.)
o Java

o JavaScript

o Visual Basic/.Net

o PHP

o Delphi

o saL

° BASH

Computational thinking is in essence the ability to
model problems in a manner that makes them
amenable to computational solutions; it is not simply
instructions and actions. Computational thinkers are
able to see algorithms, processes and data and know
how to then implement them in their chosen
language.

In Component 03/04 learners must think
computationally to solve a task and while doing
so create a report detailing the creation of their
solution, explaining what they did and why they
did it.

13

The project can be carried out in many ways but is best approached using an iterative process for developing
solutions to the task such as below:

o Success criteria (what will a successful solution be)

o Planning and design (flow charts and pseudocode)

o Development (narrative of the process with explanations of code)
o Testing and remedial actions (with narrative of changes made)

o Evaluation (clearly linked to success criteria).

This process will allow learners to demonstrate the key elements of computational thinking:
o Thinking abstractly — removing unnecessary detail

o Thinking ahead - identifying preconditions and inputs and outputs

o Thinking procedurally — identifying components of problems and solutions

o Thinking logically — predicting and analysing problems

o Thinking concurrently — spotting and using similarities.

© OCR 2016
14 GCSE (9-1) in Computer Science

3.1 Programming techniques

Learners should have studied the following:

how to identify and use variables, operators, inputs, outputs and assignments

how to understand and use the three basic programming constructs used to control the flow of a
program: Sequence; Selection; Iteration

how to understand and use suitable loops including count and condition controlled loops

how to use different types of data, including Boolean, string, integer and real, appropriately in
solutions to problems

how to understand and use basic string manipulation

how to understand and use basic file handling operations:

o open
o read
o write
o close

how to define and use arrays (or equivalent) as appropriate when solving problems
how to understand and use functions/sub programs to create structured code.

3.2 Analysis

Learners should have studied the following:

how to analyse and identify the requirements for a solution to the problem

how to set clear objectives that show an awareness of the need for real world utility
how to use abstraction and decomposition to design the solution to a problem

how to identify the data requirements for their system

how to identify test procedures to be used during and after development to check their system against

the success criteria
how to use validation to ensure a robust solution to a problem.

© OCR 2016
GCSE (9-1) in Computer Science

Learners should have studied the following:

o how to design suitable algorithms to represent the solution to a problem

o how to design suitable input and output formats and navigation methods for their system

o how to identify suitable variables and structures with appropriate validation for their system
o how to use appropriate data types in their system

o how to use functions/sub programmes to produce structured reusable code

o how to select suitable techniques for the development of the solution.

Learners should have studied the following:

o how to develop a solution to the identified problem using a suitable programming language(s)

o how to demonstrate testing and refinement of the code during development

o how to explain the solution using suitable annotation and evidence of development

o how to use suitable techniques to solve all aspects of the problem

o how to take a systematic approach to problem solving

o how to deploy practical techniques in an efficient and logical manner

o how to show an understanding of the relevant information by presenting evidence of the development
of their solutions

o how to show an understanding of the technical terminology/concepts that arise from their
investigation through analysis of the data collected

o how to use the terminology/concepts surrounding their topic and contained in the information

collected correctly when it comes to producing analysis in the supporting script.

Learners should have studied the following:

o how to produce a full report covering all aspects of the investigation

o how to present the information in a clear form which is understandable by a third party and which is
easily navigatable

o how to critically appraise the evidence that they have presented

o how to test their own solution

o how to present their evaluation in a relevant, clear, organised, structured and coherent format

o how to use specialist terms correctly and appropriately

o how to present a conclusion to the report

o how to justify their conclusions based on the evidence provided.

© OCR 2016
16 GCSE (9-1) in Computer Science

